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Abstract: - Particle filter based on particle swarm optimization algorithm (PSO-PF) is not precise and trapping 
in local optimum easily, it is not able to satisfy the requirement of advanced integrated navigation system. In 
order to solve these problems, a novel particle filter algorithm based on dynamic neighborhood population 
adaptive particle swarm optimization (DPSO-PF) is presented in this paper. This new particle filter can 
dynamically adjust the particle neighborhood environment, wherein each particle can adjust the number of 
particles in the neighborhood based on self-adaptation basis according to the neighborhood environment and 
their own position information, accordingly a best balance is achieved between optimal seeking and 
convergence rate. Finally different models are used for simulation experiment and the results indicate that this 
new algorithm improves the precision of GPS/INS integrated navigation system. 
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1 Introduction 
With global positioning system (GPS) position 
information or velocity information used for 
periodic calibration by inertial navigation system 
(INS), the performance of integrated navigation will 
be superior to that of any sub-system applied 
independently [1] . GPS/INS integrated navigation 
system has upgraded the overall performance of 
navigation system significantly [2] . Provided GPS 
receiver is capable of receiving the information sent 
by at least four satellites, GPS will be able to offer 
solution position information, and INS will measure 
the position and attitude information of the aircraft 
by means of angular rate sensor and linear 
acceleration. It is proved that integrated navigation 
can conquer respective deficiencies to deliver more 
accurate and reliable navigation information.  

In the indirect estimation on the integrated 
navigation, navigation parameter error equation [3]  
constitutes the main part of system's state equation. 
However, considering that there is a small error, the 
rules of navigation parameter error can be described 
by the classical Kalman filtering and first-order 
linear approximation equation in case of the 
requirement for low accuracy, and its model error 
will not be high.   

Particularly, however, the military field has 
made an increasingly higher demand [4] on the 

accuracy of integrated navigation in recent years, 
because of which the model error resulting from the 
use of low-order approximation cannot be ignored 
any more. Meanwhile, given that the system noise 
and measurement noise may be the non-Gaussian 
noises, particle filter can be applied to non-linear 
system effectively in the environment of non-
Gaussian noise effectively since conventional 
Kalman filtering is prone to divergence, but the 
existence of particle filter [5]  will result in sample 
degeneration and impoverishment and then exercise 
a severe influence on its estimation performance.  

Particle swarm optimized particle filter (PSO-
PF) is an intelligent optimized particle filter. PSO-
PF introduces the latest measurement into 
optimization process, and meanwhile optimizes the 
sampling process to keep updating the particle 
velocity in real time so that sampling distribution 
will switch to the regions with a high posterior 
probability [6] . PSO-PF has improved not only the 
weight degradation, but also the accuracy of particle 
filter to a certain degree. Nevertheless, the 
neighborhood population of the particles in this 
algorithm is fixed, unable to make full use of the 
information of the particles in the neighborhood, 
and the excessive iterations in the optimization 
process have led to the excessive computing 
complexity. Consequently, there is a difficulty in 
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meeting the requirement for real-time performance 
and accuracy of integrated navigation system [7] . 

The improved PSO-PF proposed herein carries 
out self-adaptive adjustments over particle 
neighborhood and number by means of 
neighborhood population extension and restriction 
factors according to the diverse changes in particle 
swarm. In this way, the algorithm can maintain not 
only high local search ability, but also the diversity 
of samples to heighten the locating accuracy of 
integrated navigation system.  

 
2. Particle filter  
Particle filter (PF) is an approximate calculation of 
Bayes estimation based on sampling theory. PF 
follows the basic thought that to gain random 
samples for approximation of posterior probability 
density

[8]
. Assuming the nonlinear dynamic process 

is expressed as equation (1) and equation (2):   
1 1( , )k k kx f x v− −=                                                   (1)                                       

( , )k k ky h x n=                                                         (2)                
If the initial probability density of the state is 
0 0 0( | ) ( )p x y p x= , then the state predictive value 

is:  

1: 1 1 1 1: 1 1( | ) ( | ) ( | )k k k k k k kp x y p x x p x y dx− − − − −= ∫        (3)                              
The state renewal equation is:  

1: 1
1:

1: 1
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( | )

k k k k
k k

k k
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p y y

−

−

=                    (4)                           

Where         

1: 1 1: 1( | ) ( | ) ( | )k k k k k k kp y y p y x p x y dx− −= ∫          (5)                               

Importance function 0: 1:( | )k kq x y  is: 

0: 1: 0 0: 1 1:
1

( | ) ( ) ( | , )
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The weight of particles is  
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=
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(7) 
The probability density is:  

1 1: 1 1 1 1
1

( | ) ( )
N

i i
k k k k k

i
p x y w x xδ− − − − −

=

= −∑                  (8)                                        

And the weight is:  

1
1

1

( | ) ( | )
( | , )

i i i
i i k k k k
k k i i

k k k

p y x p x xw w
q x x y

−
−

−

=                          (9)                          

 
3. PSO-PF algorithm  
The importance sampling process of conventional 
PF is suboptimal, whereas the incorporation of PSO 
algorithm will optimize the sampling process of PF, 
allow the weight of particle sets are more inclined to 
high likelihood region [9] , accordingly solving the 
problem of particle impoverishment, and conducing 
to reduction of particle numbers required by PF. 
PSO method is fused with PF and the key lies in 
utilizing the optimal state value pb  experienced by 
the particles and the state value pg  of the 
maximum particle with the greatest objective 
function value, and updating the speed and position 
of each particle on a real-time base through equation 
(10) and (11), accordingly forcing the particles to be 
closer to the real state.  

1

1

( )

( )

i i
k k

i
k

V Rand n pb X

rand n pg X
−

−

=  × −

+  × −
                         (10) 

1 1
i i i
k k kX X V− −= +                                               (11)                                  

Where Rand n  and rand n  are positive 
Gaussian distribution random numbers. 
 
4.  Building of Integrated Navigation 
Model 
4.1 State and Measurement Equations 
The application of filter to integrated navigation is 
ultimately intended for a more accurate parameter 
[10] , and the selection of filter state normally resorts 
to indirect process, i.e., the error ÄX of the 
navigation parameter outputted by navigation 
system is taken as filter's estimated state.  While 
indirect process is used for state estimation, the state 
of filter will be the combination of errors in system, 
without participating in the computing processes of 
the navigation parameters in GPS/INS integrated 
navigation system. Therefore, the state estimation of 
filter is independent of the computation, and INS 
can still have its superiority of high update 
frequency fully revealed

[11]
.  

Assuming that the combination method of 
GPS/INS integrated navigation system relies on the 
combination between velocity and attitude, 
GPS/INS integrated navigation system's 
measurement values can be divided into two values, 
Difference value of position measurement value and 
that of velocity measurement value. Difference 
value of velocity measurement value indicates that 
the difference between the information rendered by 
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INS and GPS receiver is worked out as another 
method of measurement.   

The error state of GPS/INS integrated navigation 
system is listed as equation (12):  

( ) ( ) ( ) ( ) ( )t t t t t= +X F X G W                            (12)                     
The position measurement of INS can be 

expressed as equation (13): 

tI

I t

I t

L LL

h h h

δ
λ λ δλ

δ

+  
   = +  
   +   

                                               (13)            

The position measurement information of global 
positioning system receiver can be expressed as 
equation (14): 

cos

N
t

M
G

E
G t

N L
G

t h

NL
RL

N
R

h
h N

λ λ

 − 
  
   = −  
     −
 
 

                                        (14)              

Where tλ , tL , and th  stand for actual location, 
and  EN ,  NN , and UN for the errors of global 
positioning system receiver in the eastward, 
northward and skyward directions.    

The position measurement value vector is 
defined as equation (15): 

( )
( ) ( ) cos ( ) ( ) ( )

I G M

p I G N p p

I g

L L R
Z t R L t t t

h h
λ λ

 −
 = − ≡ + 
 − 

H X V  (15)                          

Where, 
[ ]3 6 3 9 3 18
0 [ cos 1] 0p M Ndiag R R L× × ×

=  H

[ ]T
p N E UN N N=V  

The variances of measurement noise are 2
pNσ , 

2
pEσ , and 2

pUσ .  

pN p N

pE p E

pU p

HDOP
HDOP
HDOP

σ σ

σ σ

σ σ

 = ⋅


= ⋅
 = ⋅

                                         (16)                                 

Where, pσ  is the pseudo-range measurement error 
of global positioning system receiver.  

The velocity measurement information of INS 
can be expressed as equation (17): 

IN N N

IE E E

IU U U

v v v
v v v
v v v

δ
δ
δ

+   
   = +   
   +   

                                           (17)                          

Where Ev , Nv , and Uv  stand for true velocities 
along eastward, northward and skyward axes.  

The velocity measurement information of GPS 
can be also expressed as equation (18): 

GN N N

GE E E

v UGU

v v M
v v M

v Mv

−   
   = −   
   −   

                                          (18) 

Where NM , EM , and UM  constitute the 
components of velocity measurement errors of 
global positioning system receiver along northward, 
eastward and skyward axes.  

Below is the definition of velocity measurement 
vector:  

( ) ( ) ( ) ( )
IN GN

p IE GE v v

IU GU

v v
Z t v v t t t

v v

− 
 = − ≡ + 
 − 

H X V   (19) 

Where, [ ]3 3 3 120 [1 1 1] 0v diag× ×=  H , 

[ ]T
p N E UM M M=V . 

Supposing the measurement velocity of pseudo-
range rate ρ  of GPS receiver is 2

ρσ


, the deviations 
of the eastward, northward and skyward velocity 
errors resulting from pseudo-range rate can be 
expressed as equation (20):  

vE E

vN N

vU

HDOP
HDOP
VDOP

ρ

ρ

ρ

σ σ

σ σ

σ σ

 = ⋅


= ⋅
 = ⋅







                                          (20) 

The combination of position measurement can 
be expressed as equation (21):   

( )
( ) ( ) ( ) ( ) ( )

( )
p p

v v

t
t t t t t

t
   

= + = +   
   

H V
Z X H X V

H V
 (21)     

 
4.2 Discretization of State and Measurement 
Equations 
Following result can be obtained through the 
discretization of equation (12) and equation (21):  

, 1 1 1 1k k k k k k− − − −= +X X WΦ Γ                                (22)                 

k k k k= +Z H X V                                                 (23)                  
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Where, , 1
0
[ ( ) ] / !n

k k n
n

F t T n
∞

−
=

= ∑Φ , 

1

1
1

1 [ ( ) ] ( )
!

n

k k k
n

F t T G t T
n

−∞

−
=

  =  
  
∑Γ . 

As required by filter, the integrated navigation 
system and measurement noises and measurement 
equations can be equipped as follows:  

{ }T( ) ( ) ( ) ( )E W t W Q t tτ δ τ= −                         (24)                        

{ }T( ) ( ) ( ) ( )E V t V R t tτ δ τ= −                           (25)                           

{ }T
k j k kjE W W Q δ=                                              (26)         

{ }T
k j k kjE V V R δ=                                                (27)        

Where, 
1
0kj

k j
k j

δ
=

=  ≠
,

( ) /
( ) /

k

k

Q Q t T
R R t T

=
 =

. 

 

5. DPSO-PF Algorithm 
Since the neighborhood particles are constant 

[12 13]−
, 

particle swarm optimized particle filter cannot 
adjust and control the states of neighborhood 
population according to the specific situation of 
every particle. Under this situation, not only will the 
filter accuracy and velocity be affected, but local 
extremum will be caused

[14 15]−
. The improved 

algorithm brings in diversity factor
[16]

 and presents 
a neighborhood population extension thought. With 
the help of population extension thought, filter  can 
conduct self-adaptive control over the quantity of 
neighborhood population in accordance with the 
state of the particles, then helping the filter achieve 
the optimal balance between optimization ability 
and convergence velocity.    
5.1 Diversity Factor 
Diversity of particles proves to be one of the 
significant particle filter performance indexes

[17]
. 

Higher diversity implies better population quality 
and performance as well as lower degradation 
degree. In particle swarm optimized particle filter, 
however, the diversity also has an impact on the 
local search ability and speed. Although higher 
diversity means stronger global search ability, the 
local search ability and search speed will go down 
accordingly, and meanwhile, particle swarm 
optimized particle filter performance may decline as 
well if the diversity is improved blindly

[18 19]−
. For 

this problem, diversity factor is introduced to 
control the increase or decrease in the number of 

neighborhood population so as to optimize the 
neighborhood population quantity.  

Let particle number be M and the set for the 
fitness function value of the optimal position that 
particles pass by be 1 2 3{ , , , }i M

k k k k kY Y Y Y Y= ⋅⋅⋅ , with 
1 2 3

min min{ , , , }M
k k k kY Y Y Y Y= ⋅⋅⋅ ,  1 2 3

max max{ , , , }M
k k k kY Y Y Y Y= ⋅⋅⋅ , 

and min max[ , ]Y Y  set as the observation interval; 
Then, min max[ , ]Y Y  is divided into M equally wide 

subintervals to calculate the number of i
kY 's 

particles in each subinterval, with 
1

M

i
i

e M
=

=∑ , there 

is 
i

i
ep
M

=                                                               (28) 

                                                                    

1
log( )

M

t i i
i

D p p
=

= −∑ ,                                         (29) 

Where tD is diversity factor.  

tD  can reflect the diversity level of the particles 
in the improved PSO-PF. Supposing population fall 
into every subinterval, i.e., ie =1, tD  can be greatest 
and the diversity level will be highest; conversely, if 
large quantities of population fall into only one 
interval, tD will be smallest and population 
diversity level will be lowest.  

tD  can control the quantity of neighborhood 
population. If the diversity factor is smaller than that 
in previous cycle, the population diversity will begin 
to decline, and meanwhile, it is necessary to 
decrease the number of neighborhood population 
particles with a view to preventing the local 
extremum of the improved PSO-PF. There is a need 
to increase the number of neighborhood population 
particles for the sake of a higher convergence 
velocity of improved PSO-PF. Then, the number of 
iterations will be reduced and the filtering efficiency 
can be improved.  
 
5.2 Neighborhood Population Extension 
5.2.1 Extension Factor 
The neighborhood population will be extended 
properly since the extension of neighborhood 
population needs not only to ensure the higher 
extension probability of the particles with high 
fitness function value but also to prevent the 
excessively rapid extension. In view of this, 
definition is given as follows:  

The fitness fitness function value is sequenced 
in an ascending order to gain array h, in which let 
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marki be the sequence number of particle i's fitness; 
iC  be the number of particle i 's neighborhood 

particles; and neighbor (i) be the set of particle i's 
neighborhood particles; under this circumstance, if 
there is  

( )

( ) 1 ( )
i i

j j
j neighbor ii

mark CExtend i
mark C

C ∈

=
∑

                    (30) 

Then Extend(i) can called the extension factor of 
particle i.  

Where 
( )

1 ( )j j
j neighbor ii

mark C
C ∈

∑  represents the 

neighborhood population extension state of particle 
i. A greater j jmark C  means that fitness is low. If 
Extend(i) <1, the improved particle filter algorithm 
proposed herein will lead to a higher extension 
probability of particle i, while if Extend(i) >1, it will 
be inappropriate to extend neighborhood population. 
Extend(i) is decided by the fitness level as well as 
number of neighborhood population and particle 
state. 
 
5.2.2 Extension Thought of Neighborhood 
Particles 
(1) Extension factor Extend(i) is decided by  
equation (30). 
(2) Assuming that random number is r ϵ [0, 1], if r 
<Extend (i), a particle will be selected from the non-
neighborhood population of particle i optionally as 
new neighborhood particle, and pg will be 
upgraded; otherwise, the neighborhood population 
will not be extended.  

For the population with Extend (i) < 1, the 
smaller Extend (i) is, the greater the extension 
probability will be.  
 
5.3 Neighborhood Population Restriction 
5.3.1 Restriction Factor 
Local optimum is a typical problem that particle 
swarm optimization and particle swarm optimized 
particle filter face. In particle population, the 
particles with high fitness have a huge impact on 
neighboring population, and the main reason is that 
the population with high fitness exercises an 
influence over neighborhood population, which will 
therefore lead to local optimum and then the decline 
in diversity. To lessen the influence of the particles 
with high fitness on neighboring population, some 
of the particles with high fitness value in 
neighborhood population will be deleted, but 
number of deletion is supposed to satisfy the 
constraints on particles. The definition is as follows:  

Let iS  be the number of particles in particle i's 
neighborhood population, and then the fitness of 
particle i and the particles in its neighborhood 
population is sequenced to get array g, in which let 
lmarki be the sequence number of particle i 's fitness 
value. If lmarki = iS +1, the fitness value of particle 
i will outshine that of all particles in its 
neighborhood population, while if lmarki = 1, the 
fitness value will be low. At this time, assuming 
there is   

1( ) i i

i

S lmarkremoval i
S

− +
=                             (31) 

Where removal(i) is restriction factor of particle i. 
removal(i) has explained that the fitness of 

particle i's neighborhood particles is lower than the 
proportion of particle i's neighborhood particles. As 
the algorithm evolves and iterates, removal(i) is 
decided by with neighborhood population state.  
 
5.3.2 Restriction Thought of Neighborhood 
Particle 
This thought mitigates the influence of the 
population with high fitness value by restricting the 
largest neighborhood particle of removal(i) of the 
particles unsuitable for neighborhood population 
extension. Additionally, to ensure the successful 
implementation of improved algorithm, at least two 
neighborhood particles will be included in the self-
adaptive neighborhood population.  
(1) Calculating  Extend(i), the extension factor of 
particle i; provided Extend(i) ≥  1, continue with 
next step; otherwise, abandon neighborhood 
population extension thought.  
(2)Calculating removal(q) of particle i's 
neighborhood particle and select particle q with 
largest removal (q). 
(3) If iS >2 and qS >2, the particle q will be deleted 
from and the removal should be updated; otherwise, 
the neighborhood population should be constant.  
 
5.4 Steps for DPSO-PF improvement 
The improved particle filter steps are showed as 
follows:  
(1): When k=0, take N particles 0: , 1,...,{ }i

k i Nx = as 
samples from importance function at the initial time. 
The importance density function is expressed in 
equation (32):  

1 1~ ( | , ) ( | )i i i i i
k k k k k kx q x x z p x x− −=                      (32)        

Giving the fitness function:  

Pr
1exp[ ( )]

2 New ed
k

Y z z
R

= − −                            (33)                  
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(2): Calculating the importance value: 

1 1

1
1 1

1

( | )

( | ) ( | ) ( | )
( | , )

i i i
k k k k

i i i
i i ik k k k
k k k ki i

k k k

w w p z x
p z x p x xw w p z x

q x x z

− −

−
− −

−

=

= = 
 (34) 

(3): Calculating the mi
kv , the velocity of mi

kx , after 
mth iterations according to equation (35), and move 

mi
kx  to the position 1mi

kx +  of next iteration under the 

action of velocity 1mi
kv +  according to (36):  

1
1 1

1

( )

( )

m m

m

i ii
k k k

i
k k

V Rand n pb X

rand n pg X

+
− −

−

=  × −

+  × −
                       (35)                                     

1 1
1

m m mi ii
k k kx x v+ +

+ = +                                                (36)                         
(4): Calculating the fitness value and update 
particle's pb and pg:  

, ) ( )

, ) ( )

i i
k g ki

k i
g g k

pb Y x Y pb
pb

x Y x Y pb 

           <=  
           >

（

（
                        (37)                        

1 2 3

1 2 3

{ , , , | ( )}

max{ ( ), ( ), ( ), ( )}

N
k k k k k

N
k k k k

pg x x x x Y x
Y x Y x Y x Y x

∈ ⋅⋅⋅

= ⋅⋅⋅  
            (38)                         

Where Y(pb) is denoted by G.  
(5): Calculating diversity factor according to 
equation (29);  
(6):  Figuring out array and mark by sequencing the 
fitness of particles in particle population in 
ascending order;   
(7): Deciding whether to extend or restrict particles 
neighborhood population in the light of Dt and the 
optimal particle value Gt; if Dt ＜ Dt-1 and Gt=Gt-
1, follow step (9); otherwise, follow step (8) 
(8): Expanding the particle neighborhood population 
of every particle in accordance with neighborhood 
population extension thought and turns to step (11);  
(9): Sequencing the fitness value of particle i and its 
neighborhood particles to work out lmarki;  
(10): Updating the neighborhood population 
structure in the light of neighborhood population 
restriction thought.  
(11): When the optimal value of particle complies 
with the threshold valueε , it is indicated that the 
particles population have been already distributed 
around the high likelihood area. By now particle 
optimization should be stopped, and execute step 
(3). 
(12): Calculating the importance weight of the 
optimized particles and perform normalization.  

1
/

N
i i i
k k k

i
w w w

=

= ∑                                                  (39)               

(13): State output: 



1

N
i i
k k

i
x w x

=

= ∑                                                        (40) 

 
6. Experimental simulation  
6.1 Simulation test of basic algorithm 
performance 
Choosing the univariate nonstationary growth 
model, and the process function and measurement 
function of the simulated objects are llisted as 
follows:  

2

25 ( 1)( ) 0 5 ( 1)
1 [ ( 1)]

8cos[1 2( 1)] ( )

x tx t x t
x t

t w t

−
= . − +

+ −
+ . − +  

                        (41) 

2( )( ) ( )
20

x tz t v t= +                                                   (42) 

In which, ( )w t  and ( )v t  are zero-mean 
Gaussian noise. Since this system is highly non-
linear and the likelihood function presents 
bimodal

[20]
. 

The particle upgrade process of PSO-PF turns 
out to be an iterative optimization process. 
Generally speaking, iteration will stop in two 
situations, i.e., particle's optimal value meets the 
preset requirement or the number of iteration 
reaches the preset highest number of iterations. It is 
proved that the optimization of particle filter based 
on high-performance particle swarm has a small 
number of iterations but high real-time performance.  

By using PF 、 PSO-PF 、 DPSO-PF, state 
estimation and tracking of this non-linear system are 
performed, and the formula of root-mean-square 
error is 



2 1/2

1

1[ ( ) ]
T

tt
t

RMSE x x
T =

= −∑                                 (43) 

(1) Setting the particle number 100N = , and 
process noise variance Q = 10, measurement noise 
variance R =1, the simulation result is presented in 
figure 1 and figure 2, Setting 100N = , 20Q = , 
R =1, the simulation result is presented in figure 3 
and figure 4., the result is given in Table 1.The 
results are given in Table 1.  
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   Fig.1   State estimation of different algorithm（Q=10） 
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Fig.2  RMSE of different algorithm（Q=10） 
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Fig.3  State estimation of different algorithm（Q=20） 
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Fig.4  RMSE of different algorithm（Q=20）

Tab.1  comparison of simulation parameters by UNGM model  

Parameters Algorithms  Success rate /% RMSE Operation time/s 

1Q = , 200N =  PF / 3.5901 0.6692 

1Q = , 50N =  PSO-PF 97.91 2.4524 0.5837 

1Q = , 50N =  DPSO-PF 99.33 1.4536 0.5282 

20Q = , 200N =  PF / 5.9642 0.6803 

20Q = , 50N =  PSO-PF 97.65 4.2113 0.5924 

20Q = , 50N =  DPSO-PF 99.18 2.4300 0.5488 
As shown by the emulation result, the error of 

the integration with particle swarm optimized 
particle filter is lower than that of PF, and the 
integration is in fact the particle optimization process 
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of particle swarm that can improve population 
quality. The improved algorithm has the additional 
steps 5-10 compared with particle swarm optimized 
particle filter, but the optimization success rate of 
improved particle filter is higher than that of particle 
swarm optimized particle filter. The improved filter 
can optimize the number of particle's neighborhood 
population by dint of neighborhood extension and 
restriction thought, the accuracy and effective 
sample number of it compared with particle swarm 
optimized particle filter.  
 
6.2 Simulation test of performance in 
integrated navigation system 
Let the latitude and longitude of the initial position 
of system state vector be 32°and 118°, respectively; 
the random and constant drift errors of the gyroscope 
be 0.05°/h, respectively; the random and constant 
bias errors of the gyroscope be 50μg and 100μg, 
respectively; the update cycle of inertial navigation 
be 0.01s; the cycle of Kalman filtering be 1s; and the 
simulation time be 500s. In this paper, an analysis is 
implemented on the position and velocity error 
curves along northward, eastward and skyward 
directions before and after the integrated filter 
correction. 
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Figure 5. Position error in different 
directions(northward, eastward, skyward) 
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Figure 6. Velocity error in different 
directions(northward, eastward, skyward) 

 
As illustrated by the figure, the system faces 

rapid divergence prior to the application of 
integrated filter, but the parameter errors of the 
system are correctly effectively upon the use of 
improved particle filter algorithm. According to the 
figure above, integrated filter can control the 
position errors within 32m, with the mean square 
deviations of position errors along the northward, 
eastward and skyward directions being 6.67 m, 7.35 
m, and 4.92 m, respectively, and those of velocity 
errors being 0.22 m/s, 0.20 m/s and 0.16 m/s, 
respectively. The statistical simulation result above 
has verified the feasibility of the improved particle 
filter algorithm proposed herein, and conquered the 
defect that filter is prone to failure on the condition 
of high observation accuracy to maintain a high 
estimation accuracy. 

 
7. Conclusion  
This paper brings forward a novel particle filter 
algorithm based on neighborhood population 
adaptive particle swarm optimization which takes the 
neighborhood population information of particles 
into consideration. The diversity factors, 
neighborhood population extension factor, and 
neighborhood population limiting factor are used 
jointly to realize a self-adaption of the neighborhood 
particle numbers so as to control the influence of 
particles on the neighborhood and alleviate the local 
optimization phenomenon, and then a best balance 
will be reached between convergence speed and 
search ability, The experimental results show that the 
algorithm in this paper improves the precision and 
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thus of high applicable value in GPS/INS integrated 
navigation system. 
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kx  state values 

1kv −  systematic noise 

()p  probability density 

()q  importance function 

i
kw  particle weight 

pb  optimal location of particle i  

pg  optimal position of the whole 
particle group 

EN  error of GPS receiver in 
eastward direction. 

NN  error of GPS receiver in 
northward direction 

UN  error of GPS receiver in 
skyward direction 

2
pEσ  variance of measurement 

noise in eastward direction 

2
pNσ  variance of measurement 

noise in northward direction. 

2
pUσ  variance of measurement 

noise in skyward direction. 

Ev  true velocities along eastward, 
axes 

Nv  true velocities along 
northward axes 

Uv  true velocities along skyward 
axes 

EM  
components of velocity 

measurement errors of GPS 
receiver along eastward axes. 

NM  
components of velocity 

measurement errors of GPS 
receiver along northward axes. 

UM  
components of velocity 

measurement errors of GPS 
receiver along skyward axes. 

i
kY  fitness value  

Q  process noise variance 

R measurement noise variance 

RMSE root-mean-square error 

Extend(i) extension factor 

removal(i) restriction factor 

iS  number of neighborhood 
population 

mi
kv  velocity of particle 

ε  threshold value 

Dt diversity factor  
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